Function reference
-
Distribution - Base class for Distributions
-
is.Distribution() - Test if object is a Distribution
-
dist_bdegp() - Construct a BDEGP-Family
-
dist_beta() - Beta Distribution
-
dist_binomial() - Binomial Distribution
-
dist_blended() - Blended distribution
-
dist_dirac() - Dirac (degenerate point) Distribution
-
dist_discrete() - Discrete Distribution
-
dist_empirical() - Empirical distribution
-
dist_erlangmix() - Erlang Mixture distribution
-
dist_exponential() - Exponential distribution
-
dist_gamma() - Gamma distribution
-
dist_genpareto()dist_genpareto1() - Generalized Pareto Distribution
-
dist_lognormal() - Log Normal distribution
-
dist_mixture() - Mixture distribution
-
dist_negbinomial() - Negative binomial Distribution
-
dist_normal() - Normal distribution
-
dist_pareto() - Pareto Distribution
-
dist_poisson() - Poisson Distribution
-
dist_translate() - Tranlsated distribution
-
dist_trunc() - Truncated distribution
-
dist_uniform() - Uniform distribution
-
dist_weibull() - Weibull Distribution
-
plot_distributions() - Plot several distributions
-
quantile(<Distribution>) - Quantiles of Distributions
-
trunc_obs()as_trunc_obs()truncate_obs()repdel_obs() - Define a set of truncated observations
-
truncate_claims() - Truncate claims data subject to reporting delay
Fit Models on Data
Fit models to truncated data using maximum likelihood or EM-Algorithms, depending on the selected family.
-
fit_blended() - Fit a Blended mixture using an ECME-Algorithm
-
fit_dist()fit_dist_direct()fit(<Distribution>) - Fit a general distribution to observations
-
fit_dist_start() - Find starting values for distribution parameters
-
fit_erlang_mixture() - Fit an Erlang mixture using an ECME-Algorithm
-
fit_mixture() - Fit a generic mixture using an ECME-Algorithm
-
fit(<reservr_keras_model>) - Fit a neural network based distribution model to data
-
prob_report() - Determine probability of reporting under a Poisson arrival Process
-
predict(<reservr_keras_model>) - Predict individual distribution parameters
Work with TensorFlow
Methods for specifying, compiling and creating input for TensorFlow models using the tensorflow package.
-
tf_compile_model() - Compile a Keras model for truncated data under dist
-
tf_initialise_model() - Initialise model weights to a global parameter fit
-
k_matrix() - Cast to a TensorFlow matrix
-
callback_adaptive_lr() - Keras Callback for adaptive learning rate with weight restoration
-
callback_debug_dist_gradients() - Callback to monitor likelihood gradient components
-
as_params() - Convert TensorFlow tensors to distribution parameters recursively
-
blended_transition()blended_transition_inv() - Transition functions for blended distributions
-
flatten_params()flatten_params_matrix()flatten_bounds()inflate_params() - Flatten / Inflate parameter lists / vectors
-
integrate_gk() - Adaptive Gauss-Kronrod Quadrature for multiple limits
-
interval()is.Interval() - Intervals
-
interval_union()interval_intersection() - Convex union and intersection of intervals
-
softmax()dsoftmax() - Soft-Max function
-
weighted_moments() - Compute weighted moments
-
weighted_quantile()weighted_median() - Compute weighted quantiles
-
weighted_tabulate() - Compute weighted tabulations