Skip to contents

Distributions

Specifying families of distributions to use for fitting, simulation or prediction.

Distribution
Base class for Distributions
is.Distribution()
Test if object is a Distribution
dist_bdegp()
Construct a BDEGP-Family
dist_beta()
Beta Distribution
dist_binomial()
Binomial Distribution
dist_blended()
Blended distribution
dist_dirac()
Dirac (degenerate point) Distribution
dist_discrete()
Discrete Distribution
dist_empirical()
Empirical distribution
dist_erlangmix()
Erlang Mixture distribution
dist_exponential()
Exponential distribution
dist_gamma()
Gamma distribution
dist_genpareto() dist_genpareto1()
Generalized Pareto Distribution
dist_lognormal()
Log Normal distribution
dist_mixture()
Mixture distribution
dist_negbinomial()
Negative binomial Distribution
dist_normal()
Normal distribution
dist_pareto()
Pareto Distribution
dist_poisson()
Poisson Distribution
dist_translate()
Tranlsated distribution
dist_trunc()
Truncated distribution
dist_uniform()
Uniform distribution
dist_weibull()
Weibull Distribution
plot_distributions()
Plot several distributions
quantile(<Distribution>)
Quantiles of Distributions

Work with truncated data

Specify and work with interval truncated and interval censored data

trunc_obs() as_trunc_obs() truncate_obs() repdel_obs()
Define a set of truncated observations
truncate_claims()
Truncate claims data subject to reporting delay

Fit Models on Data

Fit models to truncated data using maximum likelihood or EM-Algorithms, depending on the selected family.

fit_blended()
Fit a Blended mixture using an ECME-Algorithm
fit_dist() fit_dist_direct() fit(<Distribution>)
Fit a general distribution to observations
fit_dist_start()
Find starting values for distribution parameters
fit_erlang_mixture()
Fit an Erlang mixture using an ECME-Algorithm
fit_mixture()
Fit a generic mixture using an ECME-Algorithm
fit(<reservr_keras_model>)
Fit a neural network based distribution model to data

Extract predictions from fitted models

Methods for adding predictions to new data.

prob_report()
Determine probability of reporting under a Poisson arrival Process
predict(<reservr_keras_model>)
Predict individual distribution parameters

Work with TensorFlow

Methods for specifying, compiling and creating input for TensorFlow models using the tensorflow package.

tf_compile_model()
Compile a Keras model for truncated data under dist
tf_initialise_model()
Initialise model weights to a global parameter fit
k_matrix()
Cast to a TensorFlow matrix
callback_adaptive_lr()
Keras Callback for adaptive learning rate with weight restoration
callback_debug_dist_gradients()
Callback to monitor likelihood gradient components
as_params()
Convert TensorFlow tensors to distribution parameters recursively

Miscellaneous

Miscellaneous functions

blended_transition() blended_transition_inv()
Transition functions for blended distributions
flatten_params() flatten_params_matrix() flatten_bounds() inflate_params()
Flatten / Inflate parameter lists / vectors
rgpd() dgpd() pgpd() qgpd()
The Generalized Pareto Distribution (GPD)
rpareto() dpareto() ppareto() qpareto()
The Pareto Distribution
integrate_gk()
Adaptive Gauss-Kronrod Quadrature for multiple limits
interval() is.Interval()
Intervals
interval_union() interval_intersection()
Convex union and intersection of intervals
softmax() dsoftmax()
Soft-Max function
weighted_moments()
Compute weighted moments
weighted_quantile() weighted_median()
Compute weighted quantiles
weighted_tabulate()
Compute weighted tabulations