Function reference
-
Distribution
- Base class for Distributions
-
is.Distribution()
- Test if object is a Distribution
-
dist_bdegp()
- Construct a BDEGP-Family
-
dist_beta()
- Beta Distribution
-
dist_binomial()
- Binomial Distribution
-
dist_blended()
- Blended distribution
-
dist_dirac()
- Dirac (degenerate point) Distribution
-
dist_discrete()
- Discrete Distribution
-
dist_empirical()
- Empirical distribution
-
dist_erlangmix()
- Erlang Mixture distribution
-
dist_exponential()
- Exponential distribution
-
dist_gamma()
- Gamma distribution
-
dist_genpareto()
dist_genpareto1()
- Generalized Pareto Distribution
-
dist_lognormal()
- Log Normal distribution
-
dist_mixture()
- Mixture distribution
-
dist_negbinomial()
- Negative binomial Distribution
-
dist_normal()
- Normal distribution
-
dist_pareto()
- Pareto Distribution
-
dist_poisson()
- Poisson Distribution
-
dist_translate()
- Tranlsated distribution
-
dist_trunc()
- Truncated distribution
-
dist_uniform()
- Uniform distribution
-
dist_weibull()
- Weibull Distribution
-
plot_distributions()
- Plot several distributions
-
quantile(<Distribution>)
- Quantiles of Distributions
-
trunc_obs()
as_trunc_obs()
truncate_obs()
repdel_obs()
- Define a set of truncated observations
-
truncate_claims()
- Truncate claims data subject to reporting delay
Fit Models on Data
Fit models to truncated data using maximum likelihood or EM-Algorithms, depending on the selected family.
-
fit_blended()
- Fit a Blended mixture using an ECME-Algorithm
-
fit_dist()
fit_dist_direct()
fit(<Distribution>)
- Fit a general distribution to observations
-
fit_dist_start()
- Find starting values for distribution parameters
-
fit_erlang_mixture()
- Fit an Erlang mixture using an ECME-Algorithm
-
fit_mixture()
- Fit a generic mixture using an ECME-Algorithm
-
fit(<reservr_keras_model>)
- Fit a neural network based distribution model to data
-
prob_report()
- Determine probability of reporting under a Poisson arrival Process
-
predict(<reservr_keras_model>)
- Predict individual distribution parameters
Work with TensorFlow
Methods for specifying, compiling and creating input for TensorFlow models using the tensorflow package.
-
tf_compile_model()
- Compile a Keras model for truncated data under dist
-
tf_initialise_model()
- Initialise model weights to a global parameter fit
-
k_matrix()
- Cast to a TensorFlow matrix
-
callback_adaptive_lr()
- Keras Callback for adaptive learning rate with weight restoration
-
callback_debug_dist_gradients()
- Callback to monitor likelihood gradient components
-
as_params()
- Convert TensorFlow tensors to distribution parameters recursively
-
blended_transition()
blended_transition_inv()
- Transition functions for blended distributions
-
flatten_params()
flatten_params_matrix()
flatten_bounds()
inflate_params()
- Flatten / Inflate parameter lists / vectors
-
integrate_gk()
- Adaptive Gauss-Kronrod Quadrature for multiple limits
-
interval()
is.Interval()
- Intervals
-
interval_union()
interval_intersection()
- Convex union and intersection of intervals
-
softmax()
dsoftmax()
- Soft-Max function
-
weighted_moments()
- Compute weighted moments
-
weighted_quantile()
weighted_median()
- Compute weighted quantiles
-
weighted_tabulate()
- Compute weighted tabulations