These functions provide information about the Pareto distribution.
dpareto
gives the density, ppareto
gives the distribution
function, qpareto
gives the quantile function and rpareto
generates random
deviates.
Usage
rpareto(n = 1L, shape = 0, scale = 1)
dpareto(x, shape = 1, scale = 1, log = FALSE)
ppareto(q, shape = 1, scale = 1, lower.tail = TRUE, log.p = FALSE)
qpareto(p, shape = 1, scale = 1, lower.tail = TRUE, log.p = FALSE)
Arguments
- n
integer number of observations.
- shape
shape parameter (must be positive).
- scale
scale parameter (must be positive).
- x, q
vector of quantiles.
- log, log.p
logical; if
TRUE
, probabilities/densitiesp
are given aslog(p)
.- lower.tail
logical; if
TRUE
(default), probabilities are \(P(X \le x)\), otherwise \(P(X > x)\).- p
vector of probabilities.
Value
rpareto
generates random deviates.
dpareto
gives the density.
ppareto
gives the distribution function.
qpareto
gives the quantile function.
Details
If shape
or scale
are not specified, they assume the default values of 1
.
The Pareto distribution with scale \(\theta\) and shape \(\xi\) has density
$$f(x) = \xi \theta^\xi / (x + \theta)^(\xi + 1)$$
The support is \(x \ge 0\).
The Expected value exists if \(\xi > 1\) and is equal to
$$E(X) = \theta / (\xi - 1)$$
k-th moments exist in general for \(k < \xi\).
References
https://en.wikipedia.org/wiki/Pareto_distribution - named Lomax therein.
Examples
x <- rpareto(1000, shape = 10, scale = 5)
xx <- seq(-1, 10, 0.01)
hist(x, breaks = 100, freq = FALSE, xlim = c(-1, 10))
lines(xx, dpareto(xx, shape = 10, scale = 5))
plot(xx, dpareto(xx, shape = 10, scale = 5), type = "l")
lines(xx, dpareto(xx, shape = 3, scale = 5), col = "red", lwd = 2)
plot(xx, dpareto(xx, shape = 10, scale = 10), type = "l")
lines(xx, dpareto(xx, shape = 10, scale = 5), col = "blue", lwd = 2)
lines(xx, dpareto(xx, shape = 10, scale = 20), col = "red", lwd = 2)