These functions provide information about the Pareto distribution.
dpareto gives the density, ppareto gives the distribution
function, qpareto gives the quantile function and rpareto generates random
deviates.
Usage
rpareto(n = 1L, shape = 0, scale = 1)
dpareto(x, shape = 1, scale = 1, log = FALSE)
ppareto(q, shape = 1, scale = 1, lower.tail = TRUE, log.p = FALSE)
qpareto(p, shape = 1, scale = 1, lower.tail = TRUE, log.p = FALSE)Arguments
- n
 integer number of observations.
- shape
 shape parameter (must be positive).
- scale
 scale parameter (must be positive).
- x, q
 vector of quantiles.
- log, log.p
 logical; if
TRUE, probabilities/densitiespare given aslog(p).- lower.tail
 logical; if
TRUE(default), probabilities are \(P(X \le x)\), otherwise \(P(X > x)\).- p
 vector of probabilities.
Value
rpareto generates random deviates.
dpareto gives the density.
ppareto gives the distribution function.
qpareto gives the quantile function.
Details
If shape or scale are not specified, they assume the default values of 1.
The Pareto distribution with scale \(\theta\) and shape \(\xi\) has density
$$f(x) = \xi \theta^\xi / (x + \theta)^(\xi + 1)$$
The support is \(x \ge 0\).
The Expected value exists if \(\xi > 1\) and is equal to
$$E(X) = \theta / (\xi - 1)$$
k-th moments exist in general for \(k < \xi\).
References
https://en.wikipedia.org/wiki/Pareto_distribution - named Lomax therein.
Examples
x <- rpareto(1000, shape = 10, scale = 5)
xx <- seq(-1, 10, 0.01)
hist(x, breaks = 100, freq = FALSE, xlim = c(-1, 10))
lines(xx, dpareto(xx, shape = 10, scale = 5))
plot(xx, dpareto(xx, shape = 10, scale = 5), type = "l")
lines(xx, dpareto(xx, shape = 3, scale = 5), col = "red", lwd = 2)
plot(xx, dpareto(xx, shape = 10, scale = 10), type = "l")
lines(xx, dpareto(xx, shape = 10, scale = 5), col = "blue", lwd = 2)
lines(xx, dpareto(xx, shape = 10, scale = 20), col = "red", lwd = 2)