These functions provide information about the generalized Pareto distribution
with threshold u
. dgpd
gives the density, pgpd
gives the distribution
function, qgpd
gives the quantile function and rgpd
generates random
deviates.
Usage
rgpd(n = 1L, u = 0, sigmau = 1, xi = 0)
dgpd(x, u = 0, sigmau = 1, xi = 0, log = FALSE)
pgpd(q, u = 0, sigmau = 1, xi = 0, lower.tail = TRUE, log.p = FALSE)
qgpd(p, u = 0, sigmau = 1, xi = 0, lower.tail = TRUE, log.p = FALSE)
Arguments
- n
integer number of observations.
- u
threshold parameter (minimum value).
- sigmau
scale parameter (must be positive).
- xi
shape parameter
- x, q
vector of quantiles.
- log, log.p
logical; if
TRUE
, probabilities/densitiesp
are given aslog(p)
.- lower.tail
logical; if
TRUE
(default), probabilities are \(P(X \le x)\), otherwise \(P(X > x)\).- p
vector of probabilities.
Value
rgpd
generates random deviates.
dgpd
gives the density.
pgpd
gives the distribution function.
qgpd
gives the quantile function.
Details
If u
, sigmau
or xi
are not specified, they assume the default values of
0
, 1
and 0
respectively.
The generalized Pareto distribution has density
$$f(x) = 1 / \sigma_u (1 + \xi z)^(- 1 / \xi - 1)$$
where \(z = (x - u) / \sigma_u\) and \(f(x) = exp(-z)\) if \(\xi\) is 0. The support is \(x \ge u\) for \(\xi \ge 0\) and \(u \le x \le u - \sigma_u / \xi\) for \(\xi < 0\).
The Expected value exists if \(\xi < 1\) and is equal to
$$E(X) = u + \sigma_u / (1 - \xi)$$
k-th moments exist in general for \(k\xi < 1\).
Examples
x <- rgpd(1000, u = 1, sigmau = 0.5, xi = 0.1)
xx <- seq(-1, 10, 0.01)
hist(x, breaks = 100, freq = FALSE, xlim = c(-1, 10))
lines(xx, dgpd(xx, u = 1, sigmau = 0.5, xi = 0.1))
plot(xx, dgpd(xx, u = 1, sigmau = 1, xi = 0), type = "l")
lines(xx, dgpd(xx, u = 0.5, sigmau = 1, xi = -0.3), col = "blue", lwd = 2)
lines(xx, dgpd(xx, u = 1.5, sigmau = 1, xi = 0.3), col = "red", lwd = 2)
plot(xx, dgpd(xx, u = 1, sigmau = 1, xi = 0), type = "l")
lines(xx, dgpd(xx, u = 1, sigmau = 0.5, xi = 0), col = "blue", lwd = 2)
lines(xx, dgpd(xx, u = 1, sigmau = 2, xi = 0), col = "red", lwd = 2)