Predict individual distribution parameters
Usage
# S3 method for reservr_keras_model
predict(object, data, as_matrix = FALSE, ...)
Arguments
- object
A compiled and trained
reservr_keras_model
.- data
Input data compatible with the model.
- as_matrix
Return a parameter matrix instead of a list structure?
- ...
ignored
Value
A parameter list suitable for the with_params
argument of the distribution family used for the model.
Contains one set of parameters per row in data
.
Examples
if (interactive()) {
dist <- dist_exponential()
params <- list(rate = 1.0)
N <- 100L
rand_input <- runif(N)
x <- dist$sample(N, with_params = params)
tf_in <- keras3::layer_input(1L)
mod <- tf_compile_model(
inputs = list(tf_in),
intermediate_output = tf_in,
dist = dist,
optimizer = keras3::optimizer_adam(),
censoring = FALSE,
truncation = FALSE
)
tf_fit <- fit(
object = mod,
x = k_matrix(rand_input),
y = x,
epochs = 10L,
callbacks = list(
callback_debug_dist_gradients(mod, k_matrix(rand_input), x)
)
)
tf_preds <- predict(mod, data = k_matrix(rand_input))
}