See stats::Lognormal.
Arguments
- meanlog
 Scalar mean parameter on the log scale, or
NULLas a placeholder.- sdlog
 Scalar standard deviation parameter on the log scale, or
NULLas a placeholder.
See also
Other Distributions: 
Distribution,
dist_bdegp(),
dist_beta(),
dist_binomial(),
dist_blended(),
dist_dirac(),
dist_discrete(),
dist_empirical(),
dist_erlangmix(),
dist_exponential(),
dist_gamma(),
dist_genpareto(),
dist_mixture(),
dist_negbinomial(),
dist_normal(),
dist_pareto(),
dist_poisson(),
dist_translate(),
dist_trunc(),
dist_uniform(),
dist_weibull()
Examples
mu <- 0
sigma <- 1
d_lnorm <- dist_lognormal(meanlog = mu, sdlog = sigma)
x <- d_lnorm$sample(20)
d_emp <- dist_empirical(x, positive = TRUE)
plot_distributions(
  empirical = d_emp,
  theoretical = d_lnorm,
  estimated = d_lnorm,
  with_params = list(
    estimated = inflate_params(
      fitdistrplus::fitdist(x, distr = "lnorm")$estimate
    )
  ),
  .x = seq(1e-3, 5, length.out = 100)
)