See stats::Lognormal.
Arguments
- meanlog
Scalar mean parameter on the log scale, or
NULL
as a placeholder.- sdlog
Scalar standard deviation parameter on the log scale, or
NULL
as a placeholder.
See also
Other Distributions:
Distribution
,
dist_bdegp()
,
dist_beta()
,
dist_binomial()
,
dist_blended()
,
dist_dirac()
,
dist_discrete()
,
dist_empirical()
,
dist_erlangmix()
,
dist_exponential()
,
dist_gamma()
,
dist_genpareto()
,
dist_mixture()
,
dist_negbinomial()
,
dist_normal()
,
dist_pareto()
,
dist_poisson()
,
dist_translate()
,
dist_trunc()
,
dist_uniform()
,
dist_weibull()
Examples
mu <- 0
sigma <- 1
d_lnorm <- dist_lognormal(meanlog = mu, sdlog = sigma)
x <- d_lnorm$sample(20)
d_emp <- dist_empirical(x, positive = TRUE)
plot_distributions(
empirical = d_emp,
theoretical = d_lnorm,
estimated = d_lnorm,
with_params = list(
estimated = inflate_params(
fitdistrplus::fitdist(x, distr = "lnorm")$estimate
)
),
.x = seq(1e-3, 5, length.out = 100)
)