Represents a modifiable Distribution family
See also
Other Distributions:
dist_bdegp()
,
dist_beta()
,
dist_binomial()
,
dist_blended()
,
dist_dirac()
,
dist_discrete()
,
dist_empirical()
,
dist_erlangmix()
,
dist_exponential()
,
dist_gamma()
,
dist_genpareto()
,
dist_lognormal()
,
dist_mixture()
,
dist_negbinomial()
,
dist_normal()
,
dist_pareto()
,
dist_poisson()
,
dist_translate()
,
dist_trunc()
,
dist_uniform()
,
dist_weibull()
Active bindings
default_params
Get or set (non-recursive) default parameters of a Distribution
param_bounds
Get or set (non-recursive) parameter bounds (box constraints) of a Distribution
Methods
Method new()
Usage
Distribution$new(type, caps, params, name, default_params)
Arguments
type
Type of distribution. This is a string constant for the default implementation. Distributions with non-constant type must override the
get_type()
function.caps
Character vector of capabilities to fuel the default implementations of
has_capability()
andrequire_capability()
. Distributions with dynamic capabilities must override thehas_capability()
function.params
Initial parameter bounds structure, backing the
param_bounds
active binding (usually a list of intervals).name
Name of the Distribution class. Should be
CamelCase
and end with"Distribution"
.default_params
Initial fixed parameters backing the
default_params
active binding (usually a list of numeric / NULLs).
Method sample()
Usage
Distribution$sample(n, with_params = list())
Arguments
n
number of samples to draw.
with_params
Distribution parameters to use. Each parameter value can also be a numeric vector of length
n
. In that case thei
-th sample will use thei
-th parameters.
Returns
A length n
vector of i.i.d. random samples from the
Distribution with the specified parameters.
Examples
dist_exponential(rate = 2.0)$sample(10)
Method density()
Usage
Distribution$density(x, log = FALSE, with_params = list())
Arguments
x
Vector of points to evaluate the density at.
log
Flag. If
TRUE
, return the log-density instead.with_params
Distribution parameters to use. Each parameter value can also be a numeric vector of length
length(x)
. In that case, thei
-th density point will use thei
-th parameters.
Examples
dist_exponential()$density(c(1.0, 2.0), with_params = list(rate = 2.0))
Method probability()
Usage
Distribution$probability(
q,
lower.tail = TRUE,
log.p = FALSE,
with_params = list()
)
Arguments
q
Vector of points to evaluate the probability function at.
lower.tail
If
TRUE
, return P(X <= q). Otherwise return P(X > q).log.p
If
TRUE
, probabilities are returned aslog(p)
.with_params
Distribution parameters to use. Each parameter value can also be a numeric vector of length
length(q)
. In that case, thei
-th probability point will use thei
-th parameters.
Examples
dist_exponential()$probability(
c(1.0, 2.0),
with_params = list(rate = 2.0)
)
Method quantile()
Usage
Distribution$quantile(
p,
lower.tail = TRUE,
log.p = FALSE,
with_params = list()
)
Arguments
p
Vector of probabilities.
lower.tail
If
TRUE
, return P(X <= q). Otherwise return P(X > q).log.p
If
TRUE
, probabilities are returned aslog(p)
.with_params
Distribution parameters to use. Each parameter value can also be a numeric vector of length
length(p)
. In that case, thei
-th quantile will use thei
-th parameters.
Examples
dist_exponential()$quantile(c(0.1, 0.5), with_params = list(rate = 2.0))
Method hazard()
Usage
Distribution$hazard(x, log = FALSE, with_params = list())
Arguments
x
Vector of points.
log
Flag. If
TRUE
, return the log-hazard instead.with_params
Distribution parameters to use. Each parameter value can also be a numeric vector of length
length(x)
. In that case, thei
-th hazard point will use thei
-th parameters.
Examples
dist_exponential(rate = 2.0)$hazard(c(1.0, 2.0))
Method diff_density()
Usage
Distribution$diff_density(x, log = FALSE, with_params = list())
Arguments
x
Vector of points.
log
Flag. If
TRUE
, return the gradient of the log-density instead.with_params
Distribution parameters to use. Each parameter value can also be a numeric vector of length
length(x)
. In that case, thei
-th density point will use thei
-th parameters.
Returns
A list structure containing the (log-)density gradients of all
free parameters of the Distribution evaluated at x
.
Examples
dist_exponential()$diff_density(
c(1.0, 2.0),
with_params = list(rate = 2.0)
)
Method diff_probability()
Usage
Distribution$diff_probability(
q,
lower.tail = TRUE,
log.p = FALSE,
with_params = list()
)
Arguments
q
Vector of points to evaluate the probability function at.
lower.tail
If
TRUE
, return P(X <= q). Otherwise return P(X > q).log.p
If
TRUE
, probabilities are returned aslog(p)
.with_params
Distribution parameters to use. Each parameter value can also be a numeric vector of length
length(q)
. In that case, thei
-th probability point will use thei
-th parameters.
Returns
A list structure containing the cumulative (log-)probability
gradients of all free parameters of the Distribution evaluated at q
.
Examples
dist_exponential()$diff_probability(
c(1.0, 2.0),
with_params = list(rate = 2.0)
)
Method is_in_support()
Usage
Distribution$is_in_support(x, with_params = list())
Arguments
x
Vector of points
with_params
Distribution parameters to use. Each parameter value can also be a numeric vector of length
length(x)
. In that case, thei
-th point will use thei
-th parameters.
Returns
A logical vector with the same length as x
indicating whether
x
is part of the support of the distribution given its parameters.
Examples
dist_exponential(rate = 1.0)$is_in_support(c(-1.0, 0.0, 1.0))
Method is_discrete_at()
Usage
Distribution$is_discrete_at(x, with_params = list())
Arguments
x
Vector of points
with_params
Distribution parameters to use. Each parameter value can also be a numeric vector of length
length(x)
. In that case, thei
-th point will use thei
-th parameters.
Returns
A logical vector with the same length as x
indicating whether
there is a positive probability mass at x
given the Distribution
parameters.
Examples
dist_dirac(point = 0.0)$is_discrete_at(c(0.0, 1.0))
Method has_capability()
Examples
dist_exponential()$has_capability("density")
Method get_type()
Examples
dist_exponential()$get_type()
dist_dirac()$get_type()
dist_mixture(list(dist_dirac(), dist_exponential()))$get_type()
dist_mixture(list(dist_dirac(), dist_binomial()))$get_type()
Method get_components()
Examples
dist_trunc(dist_exponential())$get_components()
dist_dirac()$get_components()
dist_mixture(list(dist_exponential(), dist_gamma()))$get_components()
Method is_discrete()
Details
Check if a Distribution is discrete, i.e. it has a density with respect to the counting measure.
Returns
TRUE
if the Distribution is discrete, FALSE
otherwise.
Note that mixed distributions are not discrete but can have point masses.
Examples
dist_exponential()$is_discrete()
dist_dirac()$is_discrete()
Method is_continuous()
Details
Check if a Distribution is continuous, i.e. it has a density with respect to the Lebesgue measure.
Returns
TRUE
if the Distribution is continuous, FALSE
otherwise.
Note that mixed distributions are not continuous.
Examples
dist_exponential()$is_continuous()
dist_dirac()$is_continuous()
Method require_capability()
Arguments
caps
Character vector of Capabilities to require
fun_name
Frienly text to use for generating the error message in case of failure.
Details
Ensure that a Distribution has all required capabilities. Will throw an error if any capability is missing.
Examples
dist_exponential()$require_capability("diff_density")
Method get_dof()
Details
Get the number of degrees of freedom of a Distribution family. Only parameters without a fixed default are considered free.
Examples
dist_exponential()$get_dof()
dist_exponential(rate = 1.0)$get_dof()
Method get_placeholders()
Details
Get Placeholders of a Distribution family.
Returns a list of free parameters of the family.
Their values will be NULL
.
If the Distribution has Distributions as parameters, placeholders will be computed recursively.
Examples
dist_exponential()$get_placeholders()
dist_mixture(list(dist_dirac(), dist_exponential()))$get_placeholders()
Method get_params()
Usage
Distribution$get_params(with_params = list())
Arguments
with_params
Optional parameter overrides with the same structure as
dist$get_params()
. Given Parameter values are expected to be length 1.
Returns
A list representing the (recursive) parameter structure of the
Distribution with values for specified parameters and NULL
for free
parameters that are missing both in the Distributions parameters and in
with_params
.
Examples
dist_mixture(list(dist_dirac(), dist_exponential()))$get_params(
with_params = list(probs = list(0.5, 0.5))
)
Method tf_make_constants()
Usage
Distribution$tf_make_constants(with_params = list())
Method tf_compile_params()
Returns
A list with two elements
outputs
a flat list of keras output layers, one for each parameter.output_inflater
a function taking keras output layers and transforming them into a list structure suitable for passing to the loss function returned bytf_compile_model()
Method get_param_bounds()
Returns
A list representing the free (recursive) parameter structure of
the Distribution with Interval
objects as values representing the
bounds of the respective free parameters.
Examples
dist_mixture(
list(dist_dirac(), dist_exponential()),
probs = list(0.5, 0.5)
)$get_param_bounds()
dist_mixture(
list(dist_dirac(), dist_exponential())
)$get_param_bounds()
dist_genpareto()$get_param_bounds()
dist_genpareto1()$get_param_bounds()
Method get_param_constraints()
Returns
NULL
if the box constraints specified by
dist$get_param_bounds()
are sufficient, or a function taking full
Distribution parameters and returning either a numeric vector
(which must be 0 for valid parameter combinations) or a list with
elements
constraints
: The numeric vector of constraintsjacobian
: The Jacobi matrix of the constraints with respect to the parameters
Examples
dist_mixture(
list(dist_dirac(), dist_exponential())
)$get_param_constraints()
Method export_functions()
Usage
Distribution$export_functions(
name,
envir = parent.frame(),
with_params = list()
)
Arguments
name
common suffix of the exported functions
envir
Environment to export the functions to
with_params
Optional list of parameters to use as default values for the exported functions
Details
Export sampling, density, probability and quantile functions to plain R functions
Creates new functions in envir
named {r,d,p,q}<name>
which implement
dist$sample
, dist$density
, dist$probability
and dist$quantile
as
plain functions with default arguments specified by with_params
or the
fixed parameters.
The resulting functions will have signatures taking all parameters as separate arguments.
Examples
# Example for param_bounds:
# Create an Exponential Distribution with rate constrained to (0, 2)
# instead of (0, Inf)
my_exp <- dist_exponential()
my_exp$param_bounds$rate <- interval(c(0, 2))
my_exp$get_param_bounds()
#> $rate
#> (0, 2)
#>
fit_dist(my_exp, rexp(100, rate = 3), start = list(rate = 1))$params$rate
#> [1] 2
## ------------------------------------------------
## Method `Distribution$sample`
## ------------------------------------------------
dist_exponential(rate = 2.0)$sample(10)
#> [1] 0.13286615 0.01112249 0.07288815 1.51862540 0.08488557 0.42304793
#> [7] 0.10249917 0.08983756 0.25915838 0.33607531
## ------------------------------------------------
## Method `Distribution$density`
## ------------------------------------------------
dist_exponential()$density(c(1.0, 2.0), with_params = list(rate = 2.0))
#> [1] 0.27067057 0.03663128
## ------------------------------------------------
## Method `Distribution$probability`
## ------------------------------------------------
dist_exponential()$probability(
c(1.0, 2.0),
with_params = list(rate = 2.0)
)
#> [1] 0.8646647 0.9816844
## ------------------------------------------------
## Method `Distribution$quantile`
## ------------------------------------------------
dist_exponential()$quantile(c(0.1, 0.5), with_params = list(rate = 2.0))
#> [1] 0.05268026 0.34657359
## ------------------------------------------------
## Method `Distribution$hazard`
## ------------------------------------------------
dist_exponential(rate = 2.0)$hazard(c(1.0, 2.0))
#> [1] 2 2
## ------------------------------------------------
## Method `Distribution$diff_density`
## ------------------------------------------------
dist_exponential()$diff_density(
c(1.0, 2.0),
with_params = list(rate = 2.0)
)
#> $rate
#> [1] -0.13533528 -0.05494692
#>
## ------------------------------------------------
## Method `Distribution$diff_probability`
## ------------------------------------------------
dist_exponential()$diff_probability(
c(1.0, 2.0),
with_params = list(rate = 2.0)
)
#> $rate
#> [1] 0.13533528 0.03663128
#>
## ------------------------------------------------
## Method `Distribution$is_in_support`
## ------------------------------------------------
dist_exponential(rate = 1.0)$is_in_support(c(-1.0, 0.0, 1.0))
#> [1] FALSE FALSE TRUE
## ------------------------------------------------
## Method `Distribution$is_discrete_at`
## ------------------------------------------------
dist_dirac(point = 0.0)$is_discrete_at(c(0.0, 1.0))
#> [1] TRUE FALSE
## ------------------------------------------------
## Method `Distribution$has_capability`
## ------------------------------------------------
dist_exponential()$has_capability("density")
#> [1] TRUE
## ------------------------------------------------
## Method `Distribution$get_type`
## ------------------------------------------------
dist_exponential()$get_type()
#> [1] "continuous"
dist_dirac()$get_type()
#> [1] "discrete"
dist_mixture(list(dist_dirac(), dist_exponential()))$get_type()
#> [1] "mixed"
dist_mixture(list(dist_dirac(), dist_binomial()))$get_type()
#> [1] "discrete"
## ------------------------------------------------
## Method `Distribution$get_components`
## ------------------------------------------------
dist_trunc(dist_exponential())$get_components()
#> [[1]]
#> An ExponentialDistribution with 1 dof
#>
dist_dirac()$get_components()
#> list()
dist_mixture(list(dist_exponential(), dist_gamma()))$get_components()
#> [[1]]
#> An ExponentialDistribution with 1 dof
#>
#> [[2]]
#> A GammaDistribution with 2 dof
#>
## ------------------------------------------------
## Method `Distribution$is_discrete`
## ------------------------------------------------
dist_exponential()$is_discrete()
#> [1] FALSE
dist_dirac()$is_discrete()
#> [1] TRUE
## ------------------------------------------------
## Method `Distribution$is_continuous`
## ------------------------------------------------
dist_exponential()$is_continuous()
#> [1] TRUE
dist_dirac()$is_continuous()
#> [1] FALSE
## ------------------------------------------------
## Method `Distribution$require_capability`
## ------------------------------------------------
dist_exponential()$require_capability("diff_density")
## ------------------------------------------------
## Method `Distribution$get_dof`
## ------------------------------------------------
dist_exponential()$get_dof()
#> [1] 1
dist_exponential(rate = 1.0)$get_dof()
#> [1] 0
## ------------------------------------------------
## Method `Distribution$get_placeholders`
## ------------------------------------------------
dist_exponential()$get_placeholders()
#> $rate
#> NULL
#>
dist_mixture(list(dist_dirac(), dist_exponential()))$get_placeholders()
#> $dists
#> $dists[[1]]
#> $dists[[1]]$point
#> NULL
#>
#>
#> $dists[[2]]
#> $dists[[2]]$rate
#> NULL
#>
#>
#>
#> $probs
#> $probs[[1]]
#> NULL
#>
#> $probs[[2]]
#> NULL
#>
#>
## ------------------------------------------------
## Method `Distribution$get_params`
## ------------------------------------------------
dist_mixture(list(dist_dirac(), dist_exponential()))$get_params(
with_params = list(probs = list(0.5, 0.5))
)
#> $dists
#> $dists[[1]]
#> $dists[[1]]$point
#> NULL
#>
#>
#> $dists[[2]]
#> $dists[[2]]$rate
#> NULL
#>
#>
#>
#> $probs
#> $probs[[1]]
#> [1] 0.5
#>
#> $probs[[2]]
#> [1] 0.5
#>
#>
## ------------------------------------------------
## Method `Distribution$get_param_bounds`
## ------------------------------------------------
dist_mixture(
list(dist_dirac(), dist_exponential()),
probs = list(0.5, 0.5)
)$get_param_bounds()
#> $dists
#> $dists[[1]]
#> $dists[[1]]$point
#> (-Inf, Inf)
#>
#>
#> $dists[[2]]
#> $dists[[2]]$rate
#> (0, Inf)
#>
#>
#>
#> $probs
#> list()
#>
dist_mixture(
list(dist_dirac(), dist_exponential())
)$get_param_bounds()
#> $dists
#> $dists[[1]]
#> $dists[[1]]$point
#> (-Inf, Inf)
#>
#>
#> $dists[[2]]
#> $dists[[2]]$rate
#> (0, Inf)
#>
#>
#>
#> $probs
#> $probs[[1]]
#> [0, 1]
#>
#> $probs[[2]]
#> [0, 1]
#>
#>
dist_genpareto()$get_param_bounds()
#> $u
#> (-Inf, Inf)
#>
#> $sigmau
#> (0, Inf)
#>
#> $xi
#> (-Inf, Inf)
#>
dist_genpareto1()$get_param_bounds()
#> $u
#> (-Inf, Inf)
#>
#> $sigmau
#> (0, Inf)
#>
#> $xi
#> [0, 1]
#>
## ------------------------------------------------
## Method `Distribution$get_param_constraints`
## ------------------------------------------------
dist_mixture(
list(dist_dirac(), dist_exponential())
)$get_param_constraints()
#> function (params)
#> {
#> prob_mat <- do.call(cbind, params$probs)
#> nms <- names(flatten_params(params))
#> jac_full <- matrix(0, nrow = nrow(prob_mat), ncol = length(nms))
#> jac_full[, grepl("^probs", nms)] <- 1
#> list(constraints = rowSums(prob_mat) - 1, jacobian = jac_full)
#> }
#> <environment: 0x55e9931106a0>
## ------------------------------------------------
## Method `Distribution$export_functions`
## ------------------------------------------------
tmp_env <- new.env(parent = globalenv())
dist_exponential()$export_functions(
name = "exp",
envir = tmp_env,
with_params = list(rate = 2.0)
)
#> Exported `dexp()`.
#> Exported `rexp()`.
#> Exported `pexp()`.
#> Exported `qexp()`.
evalq(
fitdistrplus::fitdist(rexp(100), "exp"),
envir = tmp_env
)
#> Fitting of the distribution ' exp ' by maximum likelihood
#> Parameters:
#> estimate Std. Error
#> rate 2.131976 0.2131975