Fit a general distribution to observations
Source:R/distribution_generics.R
, R/distribution_methods.R
fit_dist.Rd
The default implementation performs maximum likelihood estimation on all placeholder parameters.
Usage
fit_dist(dist, obs, start, ...)
fit_dist_direct(dist, obs, start, ..., .start_with_default = FALSE)
# S3 method for Distribution
fit(object, obs, start, ...)
Arguments
- dist
A
Distribution
object.- obs
Set of observations as produced by
trunc_obs()
or convertible viaas_trunc_obs()
.- start
Initial values of all placeholder parameters. If missing, starting values are obtained from
fit_dist_start()
.- ...
Distribution-specific arguments for the fitting procedure
- .start_with_default
Before directly optimising the likelihood, use an optimised algorithm for finding better starting values?
- object
same as parameter
dist
Value
A list with at least the elements
params
the fitted parameters in the same structure asinit
.logLik
the final log-likelihood
Additional information may be provided depending on dist
.
Details
For Erlang mixture distributions and for Mixture distributions, an EM-Algorithm is instead used to improve stability.
fit()
and fit_dist()
will chose an optimisation method optimized for the specific distribution given.
fit_dist_direct()
can be used to force direct maximisation of the likelihood.
See also
Other distribution fitting functions:
fit_blended()
,
fit_erlang_mixture()
,
fit_mixture()
Other distribution fitting functions:
fit_blended()
,
fit_erlang_mixture()
,
fit_mixture()
Examples
x <- rexp(100)
lambda_hat <- 1 / mean(x)
lambda_hat2 <- fit_dist(dist_exponential(), x)$params$rate
identical(lambda_hat, lambda_hat2)
#> [1] TRUE
dist <- dist_mixture(list(dist_normal(), dist_translate(dist_exponential(), offset = 6)))
params <- list(
dists = list(list(mean = 5, sd = 1), list(dist = list(rate = 1))), probs = list(0.95, 0.05)
)
set.seed(2000)
u <- runif(100, 10, 20)
x <- dist$sample(100, with_params = params)
obs <- trunc_obs(x = x[x <= u], tmin = -Inf, tmax = u[x <= u])
default_fit <- fit_dist(dist, obs)
direct_fit <- fit_dist_direct(dist, obs)
# NB: direct optimisation steps with pre-run take a few seconds
# \donttest{
direct_fit_init <- fit_dist_direct(dist, obs, start = default_fit$params)
direct_fit_auto_init <- fit_dist_direct(dist, obs, .start_with_default = TRUE)
stopifnot(direct_fit_init$logLik == direct_fit_auto_init$logLik)
c(default_fit$logLik, direct_fit$logLik, direct_fit_init$logLik)
#> [1] -153.0052 -153.0052 -153.0052
# }