Blended distribution
Arguments
- dists
A list of k >= 2 component Distributions.
- probs
k Mixture weight parameters
- breaks
k - 1 Centers of the blending zones.
dists[i]
will blend intodists[i + 1]
aroundbreaks[i]
.- bandwidths
k - 1 Radii of the blending zones. The i-th blending zone will begin at
breaks[i] - bandwidths[i]
and end atbreaks[i] + bandwidths[i]
. A bandwidth of 0 corresponds to a hard cut-off, i.e. a jump discontinuity in the density of the blended Distribution.
See also
Other Distributions:
Distribution
,
dist_bdegp()
,
dist_beta()
,
dist_binomial()
,
dist_dirac()
,
dist_discrete()
,
dist_empirical()
,
dist_erlangmix()
,
dist_exponential()
,
dist_gamma()
,
dist_genpareto()
,
dist_lognormal()
,
dist_mixture()
,
dist_negbinomial()
,
dist_normal()
,
dist_pareto()
,
dist_poisson()
,
dist_translate()
,
dist_trunc()
,
dist_uniform()
,
dist_weibull()
Examples
bd <- dist_blended(
list(
dist_normal(mean = 0.0, sd = 1.0),
dist_genpareto(u = 3.0, sigmau = 1.0, xi = 3.0)
),
breaks = list(3.0),
bandwidths = list(0.5),
probs = list(0.9, 0.1)
)
plot_distributions(
bd,
.x = seq(-3, 10, length.out = 100),
plots = c("d", "p")
)