See evmix::gpd
Usage
dist_genpareto(u = NULL, sigmau = NULL, xi = NULL)
dist_genpareto1(u = NULL, sigmau = NULL, xi = NULL)
Arguments
- u
Scalar location parameter, or
NULL
as a placeholder.- sigmau
Scalar scale parameter, or
NULL
as a placeholder.- xi
Scalar shape parameter, or
NULL
as a placeholder.
Details
All parameters can be overridden with
with_params = list(u = ..., sigmau = ..., xi = ...)
.
dist_genpareto1
is equivalent to dist_genpareto
but enforces
bound constraints on xi
to [0, 1]
.
This ensures unboundedness and finite expected value unless xi == 1.0
.
See also
Other Distributions:
Distribution
,
dist_bdegp()
,
dist_beta()
,
dist_binomial()
,
dist_blended()
,
dist_dirac()
,
dist_discrete()
,
dist_empirical()
,
dist_erlangmix()
,
dist_exponential()
,
dist_gamma()
,
dist_lognormal()
,
dist_mixture()
,
dist_negbinomial()
,
dist_normal()
,
dist_pareto()
,
dist_poisson()
,
dist_translate()
,
dist_trunc()
,
dist_uniform()
,
dist_weibull()
Examples
d_genpareto <- dist_genpareto(u = 0, sigmau = 1, xi = 1)
x <- d_genpareto$sample(100)
d_emp <- dist_empirical(x)
d_genpareto$export_functions("gpd") # so fitdistrplus finds it
#> Exported `dgpd()`.
#> Exported `rgpd()`.
#> Exported `pgpd()`.
#> Exported `qgpd()`.
plot_distributions(
empirical = d_emp,
theoretical = d_genpareto,
estimated = d_genpareto,
with_params = list(
estimated = fit(dist_genpareto(), x)$params
),
.x = seq(0, 5, length.out = 100)
)